Search results for "Superconducting coherence length"

showing 7 items of 7 documents

Unusual resistive states of multiband superconductors in the effective field theory approach

2020

Starting from the microscopic approach based on multiband Keldysh-Usadel kinetic theory we derive the minimal field-theoretical model equivalent to the time-dependent Ginzburg-Landau theory. We discuss the properties of resistive states determined by the ratio of electric field relaxation length to the superconducting coherence length. In contrast to the well-studied single-band systems we find that this ratio can vary in wide limits in multiband superconductors. As a result, the properties of resistive states in multiband superconductors can be tuned by the microscopic parameters such as the ratio of diffusion coefficients and pairing constants in different bands. As an example we consider…

Superconducting coherence lengthPhysicsSuperconductivityResistive touchscreenCondensed matter physicsCondensed Matter::SuperconductivityPairingElectric fieldEffective field theoryGeneral Physics and AstronomyRelaxation lengthDiffusion (business)EPL (Europhysics Letters)
researchProduct

Thermal, electric and spin transport in superconductor/ferromagnetic-insulator structures

2019

A ferromagnetic insulator (FI) attached to a conventional superconductor (S) changes drastically the properties of the latter. Specifically, the exchange field at the FI/S interface leads to a splitting of the superconducting density of states. If S is a superconducting film, thinner than the superconducting coherence length, the modification of the density of states occurs over the whole sample. The co-existence of the exchange splitting and superconducting correlations in S/FI structures leads to striking transport phenomena that are of interest for applications in thermoelectricity, superconducting spintronics and radiation sensors. Here we review the most recent progress in understandin…

Superconducting coherence length---FOS: Physical sciencesInsulator (electricity)02 engineering and technology01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter::Superconductivity0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)SuperconductivityPhysicsCondensed Matter - Materials Science010304 chemical physicsCondensed matter physicsSpintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityMaterials Science (cond-mat.mtrl-sci)Surfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics3. Good healthSurfaces Coatings and FilmsConventional superconductorFerromagnetismDensity of states0210 nano-technologyTransport phenomenaProgress in Surface Science
researchProduct

Scanning tunnelling spectroscopy study of paramagnetic superconducting β''-ET(4)[(H(3)O)Fe(C(2)O(4))(3)]·C(6)H(5)Br crystals.

2010

Scanning tunnelling spectroscopy (STS) and microscopy (STM) were performed on the paramagnetic molecular superconductor β''-ET(4)[(H(3)O)Fe(C(2)O(4))(3)]·C(6)H(5)Br. Under ambient pressure, this compound is located near the boundary separating superconducting and insulating phases of the phase diagram. In spite of a strongly reduced critical temperature T(c) (T(c) = 4.0 K at the onset, zero resistance at T(c) = 0.5 K), the low temperature STS spectra taken in the superconducting regions show strong similarities with the higher T(c) ET κ-derivatives series. We exploited different models for the density of states (DOS), with conventional and unconventional order parameters to take into accoun…

Superconducting coherence lengthSuperconductivityMaterials scienceCondensed matter physicsTransition temperatureOrganic superconductors order parameter scanning tunneling spectroscopyAnalytical chemistryBCS theoryCondensed Matter PhysicsParamagnetismElectrical resistivity and conductivityCondensed Matter::SuperconductivityDensity of statesGeneral Materials SciencePhase diagramJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Resistive state triggered by vortex entry in YBa 2 Cu 3 O 7−δ nanostructures

2014

We have realized YBa2Cu3O7-delta nanowires and nano Superconducting Quantum Interference Devices (nanoSQUID). The measured temperature dependence of the wire resistances below the superconducting transition temperature has been analyzed using a thermally activated vortex entry model valid for wires wider than the superconducting coherence length. The extracted zero temperature values of the London penetration depth, lambda(0) similar or equal to 270 +/- 15 nm, are in good agreement with the value obtained from critical current modulations as a function of an externally applied magnetic field in a nanoSQUID implementing two nanowires.

Superconducting coherence lengthSuperconductivityResistive touchscreenHigh-temperature superconductivityMaterials scienceCondensed matter physicsLondon penetration depthNanowireEnergy Engineering and Power TechnologyCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionVortexMagnetic fieldlawCondensed Matter::SuperconductivityElectrical and Electronic EngineeringPhysica C: Superconductivity and its Applications
researchProduct

Unconventional behavior of superconducting nanostructures

2000

Abstract Various aluminium nanostructures have been studied experimentally. Unusual nonmonotonous dependence of the critical current on external magnetic field has been observed. Pronounced nonlocal interaction has been found to decay exponentially on a scale of the superconducting coherence length ξ(T).

Superconducting coherence lengthPhysicsSuperconductivityNanostructureCondensed matter physicschemistry.chemical_elementCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMagnetic fieldchemistryAluminiumProximity effect (superconductivity)Critical currentElectrical and Electronic EngineeringPhysica B: Condensed Matter
researchProduct

Solid-State Analog of an Optical Interferometer

2004

To some extend one may treat a metal ring with two probes as a solid-state analog of an optical interferometer. One node can be considered as a beam splitter (bi-prism, for example), and the electric current at the other node as an equivalent to a light intensity of an interference pattern formed at a screen. In optics, to obtain a stationary pattern one should use a monochromatic source of radiation, as afterwards in a conventional passive media (i.e. air) the phase of the radiation is preserved. On the contrary, in solids the phase of a conducting electron wavefunction is randomly altered due to inelastic collisions (mainly phonons at high temperatures). Hence, to satisfy the condition of…

Superconducting coherence lengthPhysicsSuperconductivityLight intensityMagnetoresistanceCondensed matter physicsMagnetic flux quantumPhase (waves)ElectronInelastic scattering
researchProduct

Microwave surface impedance of proximity-coupled superconducting (Nb)/spin-glass (CuMn) bilayers

1998

The surface impedance of Nb/CuMn (superconducting/spin-glass) bilayers has been measured at 10 GHz with the parallel plate resonator technique to obtain information about the exotic behavior of the order parameter in superconducting/magnetic proximity systems. The data strongly differs from the superconducting/normal-metal case, showing the magnetic nature of the CuMn layer, which acts as a weak ferromagnet. The results are described in the framework of two models for the electrodynamics of superconducting/ferromagnetic (S/M) bilayers characterized by a proximity-coupling length scale which is independent of temperature.

Length scaleSuperconducting coherence lengthSuperconductivityMaterials scienceSpin glassCondensed matter physicsCondensed Matter - SuperconductivityFOS: Physical sciencesSuperconducting magnetic energy storageSuperconductivity (cond-mat.supr-con)ResonatorFerromagnetismCondensed Matter::SuperconductivityMicrowavePhysical Review B
researchProduct